Abstract

The pentacyclic acridinium salt RHPS4 displays anti-tumour properties in vitro as well as in vivo and is potentially cell-cycle specific. We have collected experimental data and formulated a compartmental model using ordinary differential equations to investigate how the compound affects cells in each stage of the cell cycle. In addition to a control case in which no drug was used, we treated colorectal cancer cells with three different concentrations of the drug and fitted simulations from our models to experimental observations. We found that RHPS4 caused a concentration-dependent, marked cell death in treated cells, which is best modelled by allowing the rate parameters corresponding to cell death to be sigmoidal functions of time. We have shown that the model is “identifiable”, meaning that, at least in principle, the parameter values can be determined from observable quantities. We find that at low concentrations RHPS4 primarily affects the cells in the G2/M phase, and that the drug has a delayed effect with the delay decreasing at larger doses. Since the drug diffuses into the nucleus, the observed delayed effect of the compound is unexpected and is a novel finding of our research into this compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.