Abstract

The effects of a NiO precoat on the interfacial microchemistry and the structure of gas bubbles at the steel–enamel interface were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA), thermogravimetric analysis (TGA) and image analysis techniques. The experimental evidence demonstrates that nickel oxide applied to the steel substrate as a precoat accelerates the diffusion of Fe from the steel into the enamel and promotes decarburisation of the steel substrate, this latter reaction generating CO and/or CO 2 as gases. The resulting increase in FeO concentration reduces the viscosity of enamel. The apparent decrease in the viscosity of liquid enamel, along with formation of substantial quantities of CO and/or CO 2 gases control the distribution of gas bubbles in the enamel layer. The investigation also explains the reason for the association of large gas bubbles with Fe–Ni metal-rich particles with a dendritic appearance (termed ‘dendrites in the following text) at the enamel–steel interface. The role of these Fe–Ni metal-rich ‘dendrites’ in reducing the tendency for hydrogen flaking or cracking of the enamel layer, generally referred to as fish-scaling, is also elucidated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.