Abstract

Long-term peritoneal dialysis (PD) with conventional glucose based, lactate-buffered PD fluids may lead to morphological and functional alterations of the peritoneal membrane. It was hypothesized that long-term exposure to a different buffer and a mixture of osmotic agents would cause less peritoneal abnormality. To investigate the effects of long-term exposure to a bicarbonate/lactate-buffered dialysis solution with a mixture of osmotic agents: glycerol 1.4%, amino acids 0.5%, and dextrose 1.1% (= 1% glucose) (GLAD) in a rat model with chronic kidney failure. All rats underwent a peritoneal catheter implantation and a 70% nephrectomy. Thereafter, the rats were randomly divided into 3 groups: GLAD, 3.86% Dianeal (Baxter, Nivelles, Belgium), and buffer (Physioneal without glucose, Baxter). All rats were infused daily for 16 weeks with the appropriate PD fluid. Afterwards, a peritoneal permeability analysis (SPARa) was performed using 3.86% Physioneal in all groups. After the SPARa, the rats were sacrificed to obtain tissue samples for morphometric determinations. Omental tissue was stained with picro Sirius red for assessment of fibrosis and with CD31 for vessel density. GLAD and Dianeal showed faster small solute transport compared to the hypotonic buffer. No differences between the groups were present in ultrafiltration. Dianeal had the lowest value for free water transport and the highest protein clearances. Total triglyceride in plasma was not different between GLAD and the buffer. Vessel density after GLAD exposure (20 V/F) was very similar to the value found for the buffer solution (17 V/F); Dianeal caused a significantly higher value (35 V/F, p < 0.01). Also, the amount of fibrosis was higher in the Dianeal-exposed rats (p < 0.01). Both hypertonic dialysis solutions increased peritoneal solute transport. GLAD exposure was associated with the best preservation of peritoneal morphology. The results of GLAD were very similar to those of the bicarbonate/lactate-buffered solution without osmotic agents. Studies in humans are needed for further assessment of GLAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.