Abstract

The sensitivity of phagocytic cell function as a bioindicator of pollution stress by polycyclic aromatic hydrocarbons was evaluated in the common carp (Cyprinus carpio L). The time course response of the head-kidney macrophage respiratory burst was measured 1, 2, 3, 5 and 7 days after intraperitoneal injection of a prototypical Cyp 1A inducer (3-methylcholanthrene). This immune activity was compared to the rate of induction of total cytochrome P450, ethoxyresorufinO -deethylase activity (EROD) and glutathione S-transferase activity (GST) in the liver and head-kidney.3-methylcholanthrene (40mg kg−1) caused a rapid increase in the macrophage respiratory burst. This response was maximal at day 3 post exposure and coincided with maximum induction of cytochrome P450 and EROD activity in liver and head-kidney. Moreover, alpha-naphtoflavone, which functions as both an Ah receptor antagonist and an inhibitor of cytochrome P450 1A activity, reversed the 3-methylcholanthrene induction of immune and enzymatic parameters measured, suggesting metabolic processes.Taken together these results suggest that the induction of macrophage oxidative function may be an equally sensitive marker of exposure to polycyclic aromatic hydrocarbon as the induction of biotransformation activities and confirm that responses mediated by the Ah receptor are similar, if not identical, to those of mammals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call