Abstract
The position of the oxygen dissociation curve (ODC) is modulated by 2,3-diphosphoglycerate (2,3-DPG). Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (on insulin treatment) (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22). The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%). In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control) to 2.45 mol/ml blood (IDDM). Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.
Highlights
In a pioneering study, Benesch and Benesch [1] found that 2,3-diphosphoglycerate (2,3-DPG) keeps the oxygen dissociation curve (ODC) within its normal operational range
Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC
Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22)
Summary
Benesch and Benesch [1] found that 2,3-diphosphoglycerate (2,3-DPG) keeps the oxygen dissociation curve (ODC) within its normal operational range. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.