Abstract

The aim of this study was to investigate the effect of transcranial random noise (tRNS) and transcranial alternating current (tACS) stimulation on motor cortex excitability in healthy children and adolescents. Additionally, based on our recent results on the individual response to sham in adults, we explored this effect in the pediatric population. We included 15 children and adolescents (10–16 years) and 28 adults (20–30 years). Participants were stimulated four times with 20 Hz and 140 Hz tACS, tRNS, and sham stimulation (1 mA) for 10 minutes over the left M1HAND. Single-pulse MEPs (motor evoked potential), short-interval intracortical inhibition, and facilitation were measured by TMS before and after stimulation (baseline, 0, 30, 60 minutes). We also investigated aspects of tolerability. According to the individual MEPs response immediately after sham stimulation compared to baseline (Wilcoxon signed-rank test), subjects were regarded as responders or nonresponders to sham. We did not find a significant age effect. Regardless of age, 140 Hz tACS led to increased excitability. Incidence and intensity of side effects did not differ between age groups or type of stimulation. Analyses on responders and nonresponders to sham stimulation showed effects of 140 Hz, 20 Hz tACS, and tRNS on single-pulse MEPs only for nonresponders. In this study, children and adolescents responded to 1 mA tRNS and tACS comparably to adults regarding the modulation of motor cortex excitability. This study contributes to the findings that noninvasive brain stimulation is well tolerated in children and adolescents including tACS, which has not been studied before. Finally, our study supports a modulating role of sensitivity to sham stimulation on responsiveness to a broader stimulation and age range.

Highlights

  • Noninvasive transcranial brain stimulation (NTBS) may modulate cortical excitability, outlasting the period of NTBS itself from several minutes to more than one hour [1]

  • We found that subjects who responded to sham stimulation turned out to be nonresponders to verum stimulation when applying transcranial random noise stimulation (tRNS) and 140 Hz Transcranial alternating current stimulation (tACS), while nonresponders to sham showed the expected effects to verum stimulation

  • There was a significant difference in the MSO % needed to elicit a 1 mV peak-to-peak MEP amplitude for children/adolescents compared to adults, with higher intensities for children/adolescents than for adults (z = 3:98, p < 0:001)

Read more

Summary

Introduction

Noninvasive transcranial brain stimulation (NTBS) may modulate cortical excitability, outlasting the period of NTBS itself from several minutes to more than one hour [1]. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are the most commonly used methods of NTBS [1]. Transcranial alternating current stimulation (tACS) is an increasingly popular NTBS technique [2], with the advantage of enabling manipulation and entrainment of intrinsic oscillations through the injection of sinusoidal currents [3,4,5]. The transcranial random noise stimulation (tRNS) paradigm was developed with a potential to desynchronize normal and pathological cortical rhythms. The frequency band of tRNS can encompass a full range (typically from 0.1 to 640 Hz) or can be delivered at low (0.1–100 Hz)- or high-frequency (101–640 Hz). The concept of tRNS is to enhance the stochastic dynamics of neurons and facilitate the neural processing and the related behavior [6, 7] for review see [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call