Abstract

Electric wiring is part of the fire protection systems; therefore, it must work reliably for a given period of time. Cable is in the first place among the cause of fire. Fires are always triggered by unsafe and nonstandard conditions, so we can approach safety if we know the properties of cables we want to use. We recommend adding standard ratings (PH, EP) with overload and combustion in increased/higher oxygen ratio. A plastic-coated cable does not burn in normal air, but, in a higher oxygen ratio, it shows specific burning phenomena. Cable fires may have two starting points: One is the heat reaching the plastic insulation of cables, due to the fire created by burning; the other one may be due to the fire generated by the overvoltage in the inappropriately sized cables when the outer plastic coating begins to burn. The basic condition of fire retardancy is that wire breaks or short circuits may not occur in a cable system. During this research, both effects are tested on fire-retardant cables. On the one hand, we exposed wires of various plastic sheaths to flame and to heat, as well as tested at which actual oxygen content they start combustion and flame propagation. In addition, we have investigated how fire-resistant cables react to a possible overvoltage when auto-ignition occurs. The goal was to see how conventional tests reflect requirements caused by a real fire and what the actual fire resistance of cables is, as well as examining whether the cables that have been certified as fire-resistant meet the requirements under real fire. The limited oxygen index (LOI) parameter seemed to be the most appropriate for real fire resistance. Our results have shown that factory certifications are not enough to provide complete fire safety. For example, the PH 180, E90 best rated plastic gave the weakest LOI value. PH 30 and PH 120 has proved correct the flammability. Due to the complex layers their investigation their testing is complex to, requiring a variety of tests to give a complete burn behavior. The most important exothermic peaks of diagraphs give the expected LOI values. The first and second decomposition is only indicative of damage and smoke, that is only by the tests with overload to see.

Highlights

  • Electric cables have a dual role from a fire protection aspect: 1. they are part of fire protection systems and assist in escape and rescue, 2. they may be the cause of fires, increase the propagation of fire and contribute to greater damages.Electric current is the commonest cause of fire; worldwide, half of all the fires cause injuries, death, material damage, failures and, very often, the complete destruction of devices [1]

  • A plastic-coated cable does not burn in normal air, but, in a higher oxygen ratio, it shows specific burning phenomena

  • The limited oxygen index (LOI) value of the external plastic sheath of specimen 3 is the highest, but since the Cu conduit broke before the temperature of the insulation reached the zone of 300-400 °C, critical for plastics

Read more

Summary

Introduction

Electric cables have a dual role from a fire protection aspect: 1. they are part of fire protection systems and assist in escape and rescue, 2. they may be the cause of fires, increase the propagation of fire and contribute to greater damages. When the FRSS additives are used, plasticized PVC compositions incorporating a molybdenum-based organic (MBO) complex have been found to offer excellent smoke suppression, and have a fairly high limiting oxygen index (LOI)— when plasticized with a phosphate plasticizer (i.e., they act as an FRSS additive) Both of the fire protection methods, the use of a fire-retardant coating directly on the cable surface or inserting the cable into a fire-retardant coated steel conduit, are able to delay the failure time of polyvinyl chloride (PVC)-insulated electrical cables. Compared with the method of applying the fire-retardant coating on the cable surface directly, inserting the cable into a fire-retardant coated conduit is more effective in protecting the cable, and the failure time is much longer Neither of these two methods is appropriate for protecting electrical cables that must supply power (or transmit a signal) to equipment that are required to operate for relatively long durations of fire.

E30 E60 E90
No PH marking
Results of measuring overload
Results of derivatography
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.