Abstract

BackgroundRecent studies haveshown that ginsenoside Rg1, extracted from the dry roots of Panax notoginseng as a traditional Asian medicine, plays an anti-fibrosis role in myocardial remodeling. However, the mechanism still remains unclear. In the present study, we investigate the effect of ginsenoside Rg1on the collagenic remodeling of myocardium in chronic thromboembolic pulmonary hypertension (CTEPH), and its potential mechanism.MethodsA rat model of CTEPH was established by injecting thrombi through the jugular vein wice in2 weeks. Four weeks later, four groups (Group A: normal rats + normal saline; Group B: normal rats + Rg1; Group C: CTEPH model + normal saline; Group D: CTEPH model + Rg1) were established. Normal saline and Rg1 were administrated by intraperitoneal injection. Ineach group, we measured the hemodynamic parameters, as well as the right ventricle to left ventricle (RV/LV) thickness ratio. Myocardial tissue sections of the RV were stained by hematoxylin-eosin +gentian violet and the morphological characteristics were observed by light microscopy. The matrix metalloproteinases (MMP) -2 and −9 were detected by the western blot.ResultsCompared with Group A and Group B, the right ventricular systolic pressure was significantly increased in Group C and significantly decreased in Group D. Compared with Group A and Group B, the RV/LV thickness ratio of the rats was significantly higher in Group C and Group D. There was significant fibrosis with collagen in Group C compared with Group A and Group B, and less significant changes in Group D were observed compared with those in Group C. The expression of MMP-2 and MMP-9 exhibited a significant decrease in Group C and was also significantly decreased in Group D compared withGroup A and Group B. Also, a negative linear relationship was shown between collagen-I and the expression of MMP-2 and MMP-9.ConclusionsOur animal study showed that ginsenoside Rg1 positively affects myocardial remodeling and pulmonary hemodynamics in CTEPH. Upregulation of the expression of MMP-2 and MMP-9 could explain the beneficial effects of ginsenoside Rg1 in CTEPH.

Highlights

  • Recent studies haveshown that ginsenoside Rg1, extracted from the dry roots of Panax notoginseng as a traditional Asian medicine, plays an anti-fibrosis role in myocardial remodeling

  • This study aimed to investigate the changes in collagen during right ventricular remodeling and its regulatory mechanism in a rat model of chronic thromboembolic pulmonary hypertension (CTEPH) treated with ginsenoside Rg1 so that we can provide a new approach in the treatment of anti-myocardial remodeling

  • Effect of ginsenoside Rg1 on hemodynamics and RV/left ventricular (LV) ratio in rats Compared with rats in Group A (25.2 ± 3.3 mmHg) and Group B (26.8 ± 2.1 mmHg), CTEPH rats in Group C had a significantly higher right ventricular systolic pressure (34.3 ± 4.2 mmHg)

Read more

Summary

Introduction

Recent studies haveshown that ginsenoside Rg1, extracted from the dry roots of Panax notoginseng as a traditional Asian medicine, plays an anti-fibrosis role in myocardial remodeling. Pulmonary hypertension is a pathophysiologic syndrome resulting from different causes and is characterized by increases in pulmonary artery pressure and pulmonary vascular resistance [1,2]. Without treatment, this progressively deteriorating disease leads to right heart failure and eventually to death attenuating right ventricular myocardial remodeling and delaying the deterioration of heart function should be the focus and basis of the treatment for pulmonary hypertension. The anti-fibrosis role of ginsenoside Rg1 in myocardial remodeling still remains to be clarified

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call