Abstract

We present retrieved trends in dust optical depth, dust effective radius and surface temperature from our analysis of Mars Global Surveyor Thermal Emission Spectrometer daytime data from global dust storm 2001A, and describe their significance for the martian dust cycle. The dust optical depth becomes correlated with surface pressure during southern spring and summer in years both with and without a global dust storm, indicating that global dust mixing processes are important at those seasons. The correlation is low at other times of the year. We found that the observed decay of optical depths at the later stages of the dust storm match, to first-order, theoretical values of clearing from Stokes–Cunningham fallout of the dust. Zonally averaged effective radius is constant within standard deviation of results (between 1.2 and 2.0 μm, with a global mean for all seasons of 1.7 μm), at all latitudes and seasons except at southern latitudes of 35° and higher around equinoxes in both martian years, where it is larger than average (2–3 μm). The emergence and disappearance of these larger particles correlates with observations of polar cap edge storms at those latitudes. Northern latitude observations under similar conditions did not yield a similar trend of larger average effective radii during the equinoxes. We also report on a linear correlation between daytime surface temperature drop and rise in optical depth during the global dust storm. Global dust storm 2001A produced a significant optical depth and surface temperature change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.