Abstract
To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key molecules in determining disease susceptibility or resistance. We show here that Avr2, secreted by the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol), shows both activities: it is required for full virulence in a susceptible host and also triggers resistance in tomato plants carrying the resistance gene I-2. Point mutations in AVR2, causing single amino acid changes, are associated with I-2-breakingFol strains. These point mutations prevent recognition by I-2, both in tomato and when both genes are co-expressed in leaves of Nicotiana benthamiana. Fol strains carrying the Avr2 variants are equally virulent, showing that virulence and avirulence functions can be uncoupled. Although Avr2 is secreted into the xylem sap when Fol colonizes tomato, the Avr2 protein can be recognized intracellularly by I-2, implying uptake by host cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.