Abstract

BackgroundArbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Recent studies of plant-pathogen interactions showed that effector proteins play a key role in host colonization by controlling the plant immune system. We hypothesise that also for symbiotic-plant interactions the secreted effectome of the fungus is a major component of communication and the conservation level of effector proteins between AMF species may be indicative whether they play a fundamental role.ResultsIn this study, we used a bioinformatics pipeline to predict and compare the effector candidate repertoire of the two AMF species, Rhizophagus irregularis and Rhizophagus clarus. Our in silico pipeline revealed a list of 220 R. irregularis candidate effector genes that create a valuable information source to elucidate the mechanism of plant infection and colonization by fungi during AMF symbiotic interaction. While most of the candidate effectors show no homologies to known domains or proteins, the candidates with homologies point to potential roles in signal transduction, cell wall modification or transcription regulation. A remarkable aspect of our work is presence of a large portion of the effector proteins involved in symbiosis, which are not unique to each fungi or plant species, but shared along the Glomeromycota phylum. For 95 % of R. irregularis candidates we found homologs in a R. clarus genome draft generated by Illumina high-throughput sequencing. Interestingly, 9 % of the predicted effectors are at least as conserved between the two Rhizophagus species as proteins with housekeeping functions (similarity > 90 %). Therefore, we state that this group of highly conserved effector proteins between AMF species may play a fundamental role during fungus-plant interaction.ConclusionsWe hypothesise that in symbiotic interactions the secreted effectome of the fungus might be an important component of communication. Identification and functional characterization of the primary AMF effectors that regulate symbiotic development will help in understanding the mechanisms of fungus-plant interaction.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2422-y) contains supplementary material, which is available to authorized users.

Highlights

  • Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants

  • Bioinformatic prediction of the R. irregularis effectome The R. irregularis DAOM197198 secretome was predicted from the initial putative proteome (30,282 proteins) available at the DOE Joint Genome Institute (JGI, France) database by use of a series of domain and protein structure prediction programs

  • It was observed that known pathogen effector proteins from fungi and oomycetes are secreted and fulfil at least one of the following criteria: (i) they contain a nuclear localization signal (NLS), (ii) they are small and cysteine rich (SCR), (iii) they contain internal repeats (RCP), or (iv) they show similarity to haustorial expressed proteins [17, 36]

Read more

Summary

Introduction

Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Arbuscular mycorrhizal fungi (AMF) live in an obligate symbiosis with the roots of around two-thirds of all studied land plant species, i.e. Angiosperms, Gymnosperms, Pteridophytes and some Bryophytes [1], and in one known case with cyanobacteria [2]. This interaction has a major impact on the entire soil ecosystem and plays a crucial role in agricultural systems by increasing plant tolerance to biotic and abiotic stresses [3]. The mechanism of plant infection and colonization seems to be ancient and conserved within AMF

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call