Abstract

ABSTRACT Traffic and production restrictions are two important emergency measures for controlling urban air pollution. The lockdown policies implemented during the COVID-19 pandemic period are nearly equivalent to the policies of traffic and production restriction, which provides a rare opportunity to quantitatively evaluate the effectiveness of these emergency measures. Taking Wuhan, China as the study area, this paper firstly verified the changes in six air pollutants and analyzed their change rules in different lockdown periods using statistical methods. Then the structural breakpoints in air pollutants were detected via regression discontinuity design model. To comprehensively understand the effects of restrictions on air pollution, the influences of meteorological conditions on air pollution were also investigated. The results illustrated that the concentrations of PM2.5, PM10 and NO2 decreased significantly during lockdown period. By comparing with the RDD coefficients of PM2.5 (−34.46), PM10 (−37.11) and NO2 (−19.15), the lockdown had little effect on CO (−0.32). The traffic and production restrictions had no apparent effects on SO2. Although O3 showed an increasing trend, the increase was not limited to the lockdown period, meaning that the traffic and production restrictions had less effect on the increasing trend of O3 concentration. Moreover, the structural breakpoints were verified in four air pollutants (PM2.5, PM10, NO2, and CO), and the structural breakpoints were caused by lockdown instead of the Spring Festival. The results also indicated that the meteorological conditions were not the main reasons for the changes in air pollutants during the lockdown period. This paper reveals how the traffic and production restrictions affect urban air pollution and provides a strong implementation basis for the air pollution control policy. Implications: The traffic and production restrictions are two important emergency measures for controlling heavy urban air pollution. However, these two measures have never been implemented in a large area like a city for a long enough period, so the effectiveness of these two measures has never been estimated quantitatively at a city level. The lockdown policies implemented during the COVID-19 pandemic are nearly equivalent to the policies of traffic and production restriction, which provides a rare opportunity to quantitatively evaluate the effectiveness of these emergency measures. Thus, this study measured the effectiveness of production and traffic restrictions on different air pollutants. This study provides the following implications: (1) the dominant factors for air pollution changes during the lockdown are traffic and production restriction instead of meteorological conditions; (2) the production and traffic restriction policies are effective for reducing concentrations of PM2.5, PM10 and NO2, while having less effect on O3 and CO concentrations; (3) the sharp changes in air pollutants in 2020 are unlikely to be caused by the Spring Festival. These findings are crucial for making more comprehensive policies for protecting urban air quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call