Abstract

We have constructed a channel complex model at a scale of 1:10,000 by stacking 3D-printed polylactide layers with negative relief meandering channels. This model was subjected to an ultrasonic common-offset acquisition in a water tank (with the water filling the channels), and the result was treated as a zero-offset 3D acoustic reflection seismogram, receiving a deterministic deconvolution and a poststack migration as data treatment. We then developed an algorithm to yield volumes of estimated two-way time layer thickness from multiple-frequency volumes obtained through the short-time Fourier transform. The estimated thicknesses were compared with the measurements of the physical model obtained through X-ray computed tomography. Despite the strong signal attenuation and imaging issues, the results were rather satisfactory, increasing the confidence in using spectral decomposition for quantitative seismic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.