Abstract

There have been 130 mass shootings in the United States from 1982 to June, 2022 according to the Mother Jones database of active shooter events. In these critical scenarios, making the right decisions while evacuating can be the difference between life and death. However, emergency evacuation is intensely stressful, which along with lack of verifiable real-time information may lead to costly incorrect decisions. In this paper, we demonstrate the effectiveness of a non-homogeneous semi-Markov-Decision-Process (NHSMDP) based naive algorithm that relies on prior knowledge about the layout of a building and uses recurring updates of the shooter's location (based on automatic processing of images from a camera network) to provide an optimized egress plan for evacuees. While emergency evacuations due to fire and natural disasters are well researched, the novelty of this work is in the response to a threat that moves either purposefully or randomly through the building and in incorporating the ability for an evacuee to wait for danger to pass before beginning egress and during the process of evacuation. This ability to include sojourn times in the optimized scheme is due to the NHSMDP formulation and is a notable augmentation to the current state-of-the-art. We show that following this algorithm can reduce casualties by 56% and the time spent by evacuees in the shooter's line of sight by 52% compared to an intuitive natural response guided by expert advice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.