Abstract

Durian peel (DP) is an agricultural waste that is widely used in dyes and for organic and inorganic pollutant adsorption. In this study, durian peel was acid-treated to enhance its mycotoxin adsorption efficacy. The acid-treated durian peel (ATDP) was assessed for simultaneous adsorption of aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), and fumonisin B1 (FB1). The structure of the ATDP was also characterized by SEM–EDS, FT–IR, a zetasizer, and a surface-area analyzer. The results indicated that ATDP exhibited the highest mycotoxin adsorption towards AFB1 (98.4%), ZEA (98.4%), and OTA (97.3%), followed by FB1 (86.1%) and DON (2.0%). The pH significantly affected OTA and FB1 adsorption, whereas AFB1 and ZEA adsorption was not affected. Toxin adsorption by ATDP was dose-dependent and increased exponentially as the ATDP dosage increased. The maximum adsorption capacity (Qmax), determined at pH 3 and pH 7, was 40.7 and 41.6 mmol kg−1 for AFB1, 15.4 and 17.3 mmol kg−1 for ZEA, 46.6 and 0.6 mmol kg−1 for OTA, and 28.9 and 0.1 mmol kg−1 for FB1, respectively. Interestingly, ATDP reduced the bioaccessibility of these mycotoxins after gastrointestinal digestion using an in vitro, validated, static model. The ATDP showed a more porous structure, with a larger surface area and a surface charge modification. These structural changes following acid treatment may explain the higher efficacy of ATDP in adsorbing mycotoxins. Hence, ATDP can be considered as a promising waste material for mycotoxin biosorption.

Highlights

  • Mycotoxins are fungi-derived metabolites capable of causing a dverse effects to both humans and animals

  • SEM images showed that acid treatment of Durian peel (DP) had the effect of modifying its surface (Figure 1)

  • Reported more pores on a DP surface after treatment with sulfuric acid, providing a higher capacity in the removal of bisphenol A. These findings suggest that a change in the morphological structure of the DP surface following acid treatment may affect mycotoxin adsorption

Read more

Summary

Introduction

Mycotoxins are fungi-derived metabolites capable of causing a dverse effects to both humans and animals. They are produced by toxigenic fungi, including Aspergillus, Penicillium, Alternaria, and Fusarium species, under specific temperature and humidity conditions [1,2,3,4]. Contamination by mycotoxins is common in primary agricultural commodities such as maize, rice, wheat, cereal products, meat, and dried fruits [5,6,7,8]. Multi-mycotoxin contamination of food and feedstuffs depends on environmental conditions and type of substrate [9]. A multi-mycotoxin-contaminated diet may induce acute mycotoxicosis with several chronic adverse effects, being mutagenic, carcinogenic, teratogenic, estrogenic, and immunosuppressive [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call