Abstract

How hydrodynamic and boundary lubrication affect a lubricant's film strength when cold rolling aluminum was studied using a laboratory mill. The film strength of the lubricant was determined by increasing the amount of reduction until a rapid rise in load and temperature produced a herringbone pattern on the surface of the metal. The hydrodynamic lubrication was changed by increasing the viscosity of the base oil or by increasing the rolling speed. The boundary lubrication was changed by increasing the concentration of the additives or by changing the type of additives. The results of the test showed that either increasing the amount of the hydrodynamic lubrication or increasing the amount of the boundary lubrication were effective ways to increase the film strength of the lubricant; however, the effectiveness of each decreased as the calculated film thickness of the lubricant increased. It is proposed that this can be explained by the decrease in contact area between the work roll asperities and the surface of the sheet as the thickness of the lubricant film increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.