Abstract

The Salalah central sewage treatment plant has been designed to treat 20,000 m3/day at the first stage and two further stages to double the initial capacity. The plant currently (2005) treats more than 15,000 m3/day effluents to a tertiary level, and after chlorination phase, the effluents are recharged into tube wells in a line parallel to the coast. The process aims to help stabilize the seawater interface and a part to be recovered from hand-dug wells/boreholes further inland and downstream. A three-dimensional flow and solute advection transport model was developed to assess the effectiveness of the proposed recharge scheme and to track the solute transport with respect to the design system. The advection transport model predicted that in 2020 the maximum pathlines of the injection fluids would reach the abstraction wells that are located 600 m, southward of the injection bores in about 1-year travel time in the case of the no-management interference and more than that southward under management interference. The developed flow predicted the wedge of the saline intrusion in 2019 is tracked up to 2.7 and 3.4 km from the shoreline with the injection and without the injection, respectively under constant underflow. The injection scheme is effective in pushing back the saline zone front by 700 m. This study argues that the treated wastewater would help to increase the water levels at the vicinity of the injection line and to reduce the influence of saline inflows from the coast. The reclaimed sewage recharge scheme is examined in the case of the Salalah coastal aquifer using groundwater simulation, which can also be applied to other regions with similar conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.