Abstract

An effective-field theory with correlations has been used to study critical behaviors of a mixed spin-1 and spin-2 Ising system on a honeycomb and square lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field ( h ) and a single-ion potential or crystal-field interaction ( Δ ) plane. The thermal behavior of the sublattice magnetizations of the system are investigated to characterize the nature of (continuous and discontinuous) of the phase transitions and obtain the phase transition temperature. The phase diagrams are presented in the ( Δ / | J | , k B T / | J | ) plane. The susceptibility, internal energy and specific heat of the system are numerically examined and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.