Abstract

Recently, the size extensive, ab initio effective valence shell Hamiltonian method for spin-orbit coupling has been suggested. In essence, this effective Hamiltonian method is equivalent to the quasidegenerate perturbation theory. But the difference lies in transforming the original Hamiltonian into an effective Hamiltonian acting within a relatively small valence in the effective valence shell Hamiltonian method. One advantage of the method is that the spin-orbit coupling energies of all valence states for both the neutral species and its ions are simultaneously determined with a similar accuracy from a single computation of the effective spin-orbit coupling operator. Thus, fine structure splittings are predicted for a number of states of each system for which neither experiment nor theory is available. To assess the accuracy of the effective Hamiltonian method more extensively, test calculations are performed for the spin-orbit splittings in the valence states of small diatomic hydrides and their ions. The calculated spin-orbit splittings are generally in good agreement with experiments and with other ab initio computations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call