Abstract

The flexural performance of laminated glass, a composite of two or more glass plies bonded together by polymeric interlayers, depends upon shear coupling between the glass components through the polymer. This effect is usually taken into account, in the design practice, through the definition of the effective thickness, i.e., the thickness of a monolith with equivalent bending properties in terms of stress and deflection. The traditional formulas a la Wolfel-Bennison are accurate only when the deformed bending shape of the plate is cylindrical and the plate response is similar to that of a beam under uniformly distributed load. Here, assuming approximating shape function for the deformation of laminated plates variously constrained at the edges, minimization of the corresponding strain energy furnishes new simple expressions for the effective thickness, which can be readily used in the design. Comparisons with accurate numerical simulations confirm the accuracy of the proposed simple method for laminated plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call