Abstract

The trains of 200ms biphasic square pulses with the width of 9ms delivered at 50Hz were found to be the most suitable and effective mean as stimulation in FES system of restoring the blink function in unilateral facial nerve paralysis rabbit model. FES system is a reliable tool for these patients. Facial paralysis affects thousands of people every year. Many will have long term facial difficulties and the loss of the ability to blink the eye, which can lead to potential loss of the eye. Although many treatments exist, no one approach corrects all the deficits associated with the loss of orbicularis oculi function. FES is a means of providing movement in paralysed muscles to assist with practical activities and one possible way of restoring blink and other functions in these patients. Although some previous researches had investigated the effect of simple FES system on restoration of paralyzed facial muscles, there is still controversy about the appropriate details of the most effective stimulating pulses, such as the frequency, wave pattern and pulse width. Our aim is to find out the parameters of the most appropriate and effective stimulatin verify it by a simple FES system. 24 healthy adult male New Zealand white rabbits were accepted the surgery of right side facial nerve main trunk transaction under general anesthesia as the unilateral facial nerve paralysis models. The platinum tungsten alloy electrodes were implanted in orbicularis oculi muscle. The parameters of stimulus pulses were set to a 200ms biphasic pulse with different waveforms (square, sine and triangle), different frequencies (25, 50, 100Hz) and different widths from 1 to 9ms. Next, we set up a simple FES system to verify the previous results as the stimulus signal. We observed the movement of the both sides of eyelid when eye blink induced by different kinds of pulses. In all animals, the three kinds of waveforms pulse with frequency of 25Hz could not evoke the smooth blink movement. But the pulses with frequency of 50 and 100Hz can achieve this effect. The voltage threshold of the square pulse was lower than that of the sine pulse and triangle pulse. With the increase of pulse width from 1 to 9ms, the voltage threshold decreased gradually. The voltage threshold of the pulse with frequency of 100Hz was obviously lower than that of 50Hz. But the amount of total charge of the stimulation pulse of 100Hz was significantly more than that of 50Hz. In addition, when the FES system was turned on, the eye blink on the affected side with the stimulation pulses that were set by the previous step results was successfully aroused by the blink movement as a trigger on the contralateral.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.