Abstract

We present a micromechanical analysis on the effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics in terms of their microstructural information. The overall behaviors of ferroelectric ceramics are profoundly influenced by the microstructural phenomena, where the macroscopic pyroelectric effect can be induced in an originally isotropic, thus non-pyroelectric ceramic composed of randomly oriented ferroelectric grains through poling, during which the polar axes of grains are switched by the applied electric field or mechanical stress. To analyze these complicated phenomena, we will first establish an exact connection between the effective thermal moduli and the effective electroelastic moduli of ferroelectric ceramics, and then combine the exact connection with the effective medium approximation to provide an estimate on the effective pyroelectric and thermal expansion coefficients of ferroelectric ceramics in terms of the orientation distribution of grains and poling conditions, where the texture evolution as a result of domain switching during poling has been taken into account. Numerical results are presented and good agreements with known theoretical results and some experimental data are observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call