Abstract

The presence of interfaces in fluid/solid biphasic media is known to strongly influence their behavior both in terms of solid deformation and fluids flow. Mathematical models have traditionally represented these interfaces as lines of no-thickness and whose behavior is given in terms of effective permeabilities whose physical meaning is often disconnected to the microscopic nature of the interface. This article aims to reconcile macroscopic and microscopic interface representations by investigating how the nature of microscopic flows and pressures in the interface can be used to explain its macroscopic behavior. By invoking a proper thickness average operation, we derive an closed form expression that relates the effective interfaces permeabilities to its microscopic properties. In particular, we find that the effective interface permeabilities are strongly influenced by three factors: the ratio of bulk and interface permeabilities, the fluid viscosity, and the physical thickness of the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.