Abstract
Within the framework of the Landau–Pekar variational method we have investigated the effective mass of strong-coupling magnetopolarons in a parabolic quantum dot. The effective mass as functions of the magnetic field strength and the confinement length of the quantum dot are obtained in the Gaussian function approximation. It is shown that the effective mass increases with the increasing magnetic field strength and increases with the decrease in the size of the quantum dot (QD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.