Abstract

The Hamiltonian analysis for f(T) gravity implies the existence of at least one scalar-type degree of freedom (DoF). However, this scalar DoF of f(T) gravity does not manifest in linear perturbations around a cosmological background, which indicates an underlying strong coupling problem. In this work we expand the scope by introducing an extra scalar field non-minimally coupled to f(T) gravity, aiming to address or alleviate the aforementioned strong coupling problem. Employing the effective field theory (EFT) approach, we provide a class of torsional EFT forms up to second order operators, avoiding the Ostrogradsky ghost. To illustrate this phenomenon, we study a simple model and perform a detailed analysis of its linear scalar perturbations. The results demonstrate that the coupling terms in this toy model are necessary to avoid the initial degenerate situation. The complete avoidance of new constraints requires more coupling terms. Once this vanishing scalar DoF starts propagating in cosmological background at linear level, this phenomenon will demand a revisit of the strong coupling issue that arises in f(T) gravity, particularly in the presence of matter coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.