Abstract
This paper presents a biased random-key genetic algorithm for k-medoids clustering problem. A novel heuristic operator was implemented and combined with a parallelized local search procedure. Experiments were carried out with fifty literature data sets with small, medium, and large sizes, considering several numbers of clusters, showed that the proposed algorithm outperformed eight other algorithms, for example, the classics PAM and CLARA algorithms. Furthermore, with the results of a linear integer programming formulation, we found that our algorithm obtained the global optimal solutions for most cases and, despite its stochastic nature, presented stability in terms of quality of the solutions obtained and the number of generations required to produce such solutions. In addition, considering the solutions (clusterings) produced by the algorithms, a relative validation index (average silhouette) was applied, where, again, was observed that our method performed well, producing cluster with a good structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.