Abstract

The single point incremental forming process (SPIF) are suited for sheet metal prototyping, because it is a low cost production process that produces sheet metal part without any used of die, and easy to adjust the part’s geometry by change toolpath. But the quality of forming parts is still in doubt. In some applications, such as mould cavity for rapid mould and the medical parts, in this case the inside surface roughness plays an importance role. In this paper, the SPIF process parameters that affected to the inner surface roughness were experimental studied. The investigated parameters are composing of tool feed rate, side overlap, depth step and tool radius. The 2k-p factorial experimental design was used to analyze the interaction between each parameter. The results showed that increasing feed rate and depth step decreased inner surface roughness. Reducing tool rotational speed and feed rate reduced inner surface roughness. So increasing depth step with decreasing side overlap reduced inner surface roughness. The large tool radius and lower side overlap improved inner surface roughness. The large tool radius and higher depth step improved inner surface roughness. And last, reducing tool rotational speed with larger tool radius, the inner surface roughness is decreased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call