Abstract

There is a lack of knowledge related to the action of Ar on microbial development and prevention of oxidation when applied to raw meat under modified-atmosphere package (MAP). The aim of this study was to evaluate the effect of an anaerobic gas mixture with Ar on spoilage flora growth, color, and lipid oxidation stability of turkey meat under MAP stored at 0°C. Breast muscles samples were collected on different working days from turkey carcasses (BUT9 and BIG6), fast-cooled in a tunnel (−2°C, 2 m·s−1, 90% RH) for 2 h and selected to be deboned according current practices in industrial slaughterhouses. The breasts were cut into slices that were individually packaged under aerobiosis (P0) and in 4 different modified atmospheres containing different gas mixtures as (P1) 100% N2, (P2) 50% Ar-50% N2, (P3) 50% Ar-50% CO2, and (P4) 50% N2-50% CO2. All samples were stored at 0 ± 1°C in the dark for between 12 and 25 d. Meat samples packaged in P0 were analyzed for their microbial and physicochemical characteristics on d 0, 5, and 12 of storage and then extended to 19 and 25 d when samples were under MAP. The microbial shelf life period extension of MAP sliced turkey meat compared with aerobic packaging (5-d shelf life) is 1 wk more for P1 and P2 mixtures, 2 wk for P4, and 3 wk for P3. The Ar-CO2 mixture was more efficient in delaying flora development than CO2-N2 with 1 log difference on the 25th day of storage, for total psychrotrophic counts, total anaerobic counts, and Brochothrix thermosphacta. The presence of Ar on gas mixtures did not seem to have any additional protective effect on lipid turkey meat oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call