Abstract

Periventricular leukomalacia (PVL) is either a diffuse or cystic lesion of the periventricular white matter that leaves the overlying cortical grey matter largely intact. It is believed to result from hypoxia occurring pre- or perinatally and is a major cause of cerebral palsy. We have modelled PVL in rats comparing the effects of discrete injections of 3-nitropropionic acid (3-NP), a mitochondrial toxin, ibotenic acid (IBA), a glutamate analogue, or saline into the sub-cortical white matter on postnatal day 7 (P7). Following recovery times ranging from 3 days to 4 weeks, forebrain sections were Nissl stained or immunostained for Bax, cJun, calbindin (CB), parvalbumin (PV) or non-phosphorylated neurofilaments (NPNF). Compared to saline injections, ibotenic acid caused large lesions of both grey and white matter not characteristic of periventricular leukomalacia. 3-Nitropropionic acid injections caused small focal lesions restricted to the sub-cortical white matter. 3-Nitropropionic acid treatment initially increased expression of the apoptosis promoting proteins Bax and cJun, as well as non-phosphorylated neurofilaments in cortical layer V overlying the injection site. Non-phosphorylated neurofilament expression distal to the lesion was decreased representing a loss of cortical axons, but persisted and even increased with time within the cortex, demonstrating persistence of the parent cell bodies and local sprouting of neurites. There were significantly fewer calbindin and parvalbumin positive neurones in the motor cortex (MC) side ipsilateral to the 3-nitropropionic acid injection compared to the contralateral side. These persistent differences in expression of activity sensitive calcium binding proteins suggest alterations in local cortical circuitry without substantial loss of grey matter as is characteristic of periventricular leukomalacia. Changes in expression of Bax, cJun and non-phosphorylated neurofilaments during normal development are also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.