Abstract

Using in vitro and in vivo models, this study investigated the hemostatic potential to control bleeding of both unloaded gelatin-graphene oxide aerogels and the same loaded with proanthocyanidins (PAs) from Vitis vinifera grape skin extract. Our results showed that the physicochemical and mechanical properties of the aerogels were not affected by PA inclusion. In vitro studies showed that PA-loaded aerogels increased the surface charge, blood absorption capacity and cell viability compared to unloaded ones. These results are relevant for hemostasis, since a greater accumulation of blood cells on the aerogel surface favors aerogel–blood cell interactions. Although PAs alone were not able to promote hemostasis through extrinsic and intrinsic pathways, their incorporation into aerogels did not affect the in vitro hemostatic activity of these composites. In vivo studies demonstrated that both aerogels had significantly increased hemostatic performance compared to SpongostanTM and gauze sponge, and no noticeable effects of PA alone on the in vivo hemostatic performance of aerogels were observed; this may have been related to its poor diffusion from the aerogel matrix. Thus, PAs have a positive effect on hemostasis when incorporated into aerogels, although further studies should be conducted to elucidate the role of this extract in the different stages of hemostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.