Abstract

Polycyclic aromatic hydrocarbons (PAHs) may be 1 of etiologic factors responsible for congenital heart diseases (CHDs). Variations of the microsomal epoxide hydrolase (EPHX1) gene, as well as their possible interactions with PAHs exposure, may increase susceptibility to CHDs.This case-control study investigated the risk of CHDs in relation to the EPHX1 polymorphisms and assessed the interactions between these polymorphisms and PAHs exposure in 357 mothers of CHDs fetuses and 270 control mothers. Logistic regression models for the risk of CHDs were applied to determine the effect of genetic polymorphisms using additive, recessive, and dominant genetic models, as well as gene-exposure interactions. Multiple testing was adjusted by applying the false discovery rate (FDR).None of the maternal genetic polymorphisms of EPHX1 was associated with CHDs occurrence. Only the single nucleotide polymorphism rs1051740 was associated with an increased risk of right-sided obstructive malformations under the recessive model (adjusted odds ratio [aOR] = 1.852, 95% confidence interval [CI]: 1.065, 3.22) before FDR correction. A possible modifying effect of PAHs exposure on genetic polymorphisms of EPHX1 was found in susceptibility to CHDs, though no multiplicative-scale interactions between maternal exposure to PAHs and polymorphisms of EPHX1 gene were seento affect the risk of CHDs.The role of EPHX1 gene polymorphisms for CHDs need to be further evaluated, in particularly by interacting with PAHs exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call