Abstract

In this study, the effect of the addition of various amounts of ZnO (0, 1, 2, and 3 wt. %) to aluminosilicate bioactive glass (BGs) network (SiO2-Al2O3- P2O5-CaF2-CaO-K2O-Na2O) on the mechanical properties of the fabricated glass ionomer cement (GIC) samples was studied. The GIC samples were fabricated by mixing the synthesized aluminosilicate BGs with Rivaself cure liquid. The synthesized aluminosilicate glass was characterized using differential thermal analysis (DTA), X-Ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Besides, the mechanical properties of GICs were evaluated using Vickers microhardness and Diametral tensile strength (DTS) test. According to DTA analysis, the glass transition temperature (Tg) of aluminosilicate BGs was decreased from 575 to 525 °C. According to the results, the aluminosilicate BGs with an amorphous state (~90%) and the grain size of 36 μm were synthesized. Doping of the ZnO to glass network up to 3 wt. % could increase the amorphous phase up to 95% and decrease the grain size of the particles up to 28 μm. The microhardness and DTS of the GIC samples containing the aluminosilicate BGs were about 677 Hv and 8.5 MPa, respectively. Doping of ZnO to the glass network increased the mentioned values up to 816 Hv and 12.1 MPa, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.