Abstract

Amorphous yttrium tantalate, as well as solid solutions containing zirconia, transform on heating to a monoclinic-prime phase and then, with further heating, to a crystalline tetragonal (T) solid solution phase at ∼1450 °C. On subsequent cooling the tetragonal phase converts by a second-order displacive transformation to a different monoclinic phase not to the monoclinic-prime phase. On subsequent reheating and cooling, the phase transformation occurs between the monoclinic (M) and tetragonal phases, and the monoclinic-prime phase cannot be recovered. The limit of zirconia solubility in both the monoclinic-prime and monoclinic phases lies between 25 and 28 m/o ZrO2, consistent with previous first-principles calculations. The monoclinic-prime phase is stable up to at least 1400 °C for 100 h for zirconia concentrations from 0 to ∼60 m/o ZrO2. This temperature exceeds the temperature of the equilibrium M-T phase transformation suggesting that the monoclinic-prime phase transforms directly to the tetragonal phase by a reconstructive transformation and is unaffected by the zirconia in solid solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call