Abstract

Zeolite L, with the ratio Si/Al = 4, was prepared by hydrothermal method and used to obtain composite films based on a polyimide matrix having pendant carboxylic groups. The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films was studied. The films were prepared by casting a suspension resulting from direct mixing of a poly(amic acid) (PAA) solution and zeolite L particles onto glass plates, followed by thermal imidization under controlled temperature conditions. The PAA was synthesized by solution polycondensation of a mixture of two diamines, 3,5-diaminobenzoic acid and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (molar ratio 1:3), with 4,4′-oxydiphthalic anhydride, using N-methyl-2-pyrrolidone as solvent. To improve the compatibility between organic and inorganic phases, the surface of zeolite particles was modified by treating with 3-aminopropyltriethoxysilane. The surface morphology of the composite films investigated by scanning electron microscopy showed good compatibility between filler and polymer matrix. The films were flexible, tough, and exhibited high-thermal stability, having the initial decomposition temperature above 450 °C. Dynamic mechanical analysis and dielectric spectroscopy revealed sub-glass transitions, γ and β, and an α relaxation corresponding to the segmental motions above the glass transition temperature. The values of the dielectric constant at 10 kHz and 200 °C were in the range of 3.3–4.2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call