Abstract
We systematically investigated the influence of yttrium (Y) on the evolution behavior of helium (He) in tungsten (W) by first-principles calculations. It is found that the addition of Y reduces the solution energy of He atoms in W. Interestingly, the solution energy of He decreases with decreasing distance between Y and He. The binding energies between Y and He are inversely correlated with the effective charge of He atoms, which can be attributed to the closed shell structure of He. In addition, compared with pure W, the diffusion barrier (0.033 eV) of He with Y is lower, calculated by the climbing-image nudged elastic band (CI-NEB) simulations, reflecting that the existence of Y contributes to the diffusion of He in W. The obtained results provide a theoretical direction for understanding the diffusion of He.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.