Abstract

In this paper we describe the effects of X-radiation on the viability of cerebellar granule cells grown in culture. Cell cultures were exposed to X-rays 2 h after plating and then grown for 1–7 days. Two days after X-ray exposure with a dose-range of 0.1–2 Gy (acute effect), a significant decrease in neuronal number was observed. The magnitude of the lethal effect was directly correlated to the dose of X-ray applied. When the interval between plating and irradiation was increased, the acute lethal effect of X-rays decreased. 3H-thymidine incorporation was maximal during the first 24 h in vitro and decreased to nearly blank levels, after 72 h. In some experiments, cells present in each culture dish were counted at day 2 and at day 7. We observed that the number of cells present in sham-irradiated cultures decreased from day 2 to day 7, reflecting cell death after several days in vitro. The cell loss observed in X-irradiated cultures was significantly greater as compared with sham-irradiated cultures, confirming the deleterious effect of X-ray on cell survival. This effect was completely prevented by GM1 (6.5, 10 and 30 μM) added 48 h after X-ray exposure, but not 1 h after plating. We conclude that X-rays induce two different effects: an acute effect related to impaired DNA synthesis which is very active during the first 24 h in vitro, and a long-term effect owing to a sublethal damage in the surviving neuronal population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.