Abstract

Many service facilities operate seven days per week. The operations managers of these facilities face the problem of allocating personnel of varying skills and work speed to satisfy the demand for services. Furthermore, for practical reasons, periodic staffing schedule is implemented regularly. We introduce a novel approach for modeling periodic staffing schedule and analyzing the impact of employee variability on customer delay. The problem is formulated as a multiple server vacation queueing system with Bernoulli feedback of customers. At any point in time, at most one server can serve the customers. Each server incur a durations of set-up time before they can serve the customers. The customer service time and server set-up time may depend on the server. The service process is unreliable in the sense that it is possible for the customer at service completion to rejoin the queue and request for more service. The customer arrival process is assumed to satisfy a linear–quadratic model of uncertainty. We will present transient and steady-state analysis on the queueing model. The transient analysis provides a stability condition for the system to reach steady state. The steady-state analysis provides explicit expressions for several performance measures of the system. For the special case of M X / G/1 vacation queue with a gated or exhaustive service policy and Bernoulli feedback, our result reduces to a previously known result. Lastly, we show that a variant of our periodic staffing schedule model can be used to analyze queues with permanent customers. For the special case of M/ G/1 queue with permanent customers and Bernoulli feedback of ordinary customers, we obtain results previously given by Boxma and Cohen (IEEE J. Select. Areas Commun. 9 (1991) 179) and van den Berg (Sojourn Times in Feedback and Processor Sharing Queues, CWI Tracts, vol. 97, Amsterdam, Netherlands, 1993). Scope and purpose Workforce scheduling is a classical problem and has been studied by many researchers. The problem is usually formulated with homogeneous workforce as part of the assumption. Clearly, non-homogeneous workforce is a fact of life for many organizations. Operations manager would prefer to have skills and experience worker as it would improve the quality of the services provided. Ignoring the effect of employees with varying skills and work speed would seriously undermine the effectiveness of the services provided and lead to significant undesirable outcomes for the organization. This paper aims as a first step to fill the gap of past research. We present a novel approach to analyze the issue of non-homogeneous workforce on stability of work flows and the effect of workers with different capabilities on customers’ waiting time. We believe that the results are useful for operations manager dealing with non-homogeneous workforce.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call