Abstract

This study evaluated the effect of wind speed and direction and surrounding maize field on the air exchange rate (ACH) and indoor air velocity in a dairy cow building with hybrid ventilation, which combined auto-controlled natural and partial mechanical pit ventilation. The standard k−ε turbulence model and standard wall function were applied in CFD modeling with extension of capability to account for the aerodynamics effect of surrounding maize plant canopy in the wind domain by using user defined functions (UDF). This extended model was validated by on-site measured velocities and temperatures. A reasonably good agreement was found between simulated and measured results. The wind speed influenced ACH greatly while modeling the maize field had little effect on ACH with low wind speed. With wind speed of 3.86ms−1 in validation case, modeling the maize field reduced total ACH by 24%, ACH via bottom openings on the sidewall by 89.7% and air speed measured upwind by 71%. The results revealed that the plant canopy had the most significant effect on ACH through the opening on the sidewall. With the variation of wind direction from 0° to 90°, the difference of ACH could be 60%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.