Abstract

Polyhydroxyalkanoates (PHAs), also known as bacterial polyesters, are considered novel polymers for fabricating biomedical products, such as sutures and hernia meshes, because of their biocompatibility and slow biodegradability. Poly-4-hydroxybutyrate (P4HB) is a commonly used PHA that was explored in this study as an absorbable biomaterial for several medical applications, including controlled drug delivery. Currently, P4HB is melt spun and drawn into filaments at high processing temperatures (~200°C), precluding the incorporation of thermally sensitive drugs within the polymer during melt spinning. Post-spinning drug incorporation can potentially cause nonuniform drug absorption that leads to an uneven release profile. This raises the need for a low temperature spinning process for these polymers. Until now, there has been no defined procedure to produce P4HB fibers through a low temperature solution spinning process. This study focuses on determining suitable wet spinning conditions to form continuous P4HB fibers. After several preliminary tests, it was found that a chloroform-based spin dope with 10-15% polymer concentration facilitated the extrusion of continuous stretchable fibers into a coagulation bath containing reagent alcohol. Subsequently, several P4HB fibers were spun with various spin dope concentrations, coagulation bath temperatures, and spin draw ratios to assess their effect on fiber structure and properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.