Abstract

Along with the rapid increase in the size of welding structures, the steel plate used for structure has been increased in thickness. Especially, the growing capacity of large scale ships such as container ships has led to an increase in the thickness and the strength of steel plates for shipbuilding. The toughness and the resistance to brittle fractures of the steel plate tend to decrease for thick plates, which is a result of the so-called thickness effect. Steel plates with 80mm thickness were used and two welding processes, which are flux cored arc welding (FCAW) process and electron gas welding process (EGW), were used to produce full thickness weld joints. To evaluate of brittle crack propagation path, measurement of welding residual stress in both welded joint. In this study, it was aimed to investigate the effect of welding variables on the crack arrest toughness and crack propagation path of thick steel plate welds. Quantitative analysis by temperature gradient ESSO test was conducted to clarify the effect of welding variables for flux cored arc welding (FCAW) and electro gas welding (EGW) joint of thick steel plates with the thickness of 50 and 80mm. Also, welding residual stress was measured for evaluate of welding residual stress effect in both welding process in brittle crack propagation path using neutron science analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call