Abstract
This paper numerically and experimentally investigated the effect of weak crossflow on the heat transfer characteristics of a short-distance impinging jet. The Reynolds number of the impinging jet ranged from 6000 to 15,000, and the mass velocity ratio (M) between the crossflow and the jet varied from 0 to 0.15. The separation distance (H) between the exit of the jet nozzle and the impingement surface equals to the exit diameter (D) of the impinging jet. In the experiments, the temperature distribution on the impingement target surface was measured using a transient liquid crystal method. In the numerical simulation, a multiblock hexahedral mesh was applied to discrete the computational domain, and a commercial CFD package (Ansys cfx-12.0) with a standard k-ɛ turbulence model was used for computation. It was found that compared to the impinging cooling without crossflow, the heat transfer characteristics near the impinging stagnation point remained almost constant. At the same time, the presence of crossflow decreased the heat transfer rate in the upstream region of the impinging stagnation point, while increased that in the downstream of the impinging stagnation point. Taken together, crossflow has a complex influence on the impinging cooling, which is highly dependent on the mass velocity ratio between the crossflow and the jet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.