Abstract

Solar flare hard X-ray spectra from RHESSI are normally interpreted in terms of purely collisional electron beam propagation, ignoring spatial evolution and collective effects. In this paper we present self-consistent numerical simulations of the spatial and temporal evolution of an electron beam subject to collisional transport and beam-driven Langmuir wave turbulence. These wave-particle interactions represent the background plasma's response to the electron beam propagating from the corona to chromosphere and occur on a far faster timescale than coulomb collisions. From these simulations we derive the mean electron flux spectrum, comparable to such spectra recovered from high resolution hard X-rays observations of solar flares with RHESSI. We find that a negative spectral index (i.e. a spectrum that increases with energy), or local minima when including the expected thermal spectral component at low energies, occurs in the standard thick-target model, when coulomb collisions are only considered. The inclusion of wave-particle interactions does not produce a local minimum, maintaining a positive spectral index. These simulations are a step towards a more complete treatment of electron transport in solar flares and suggest that a flat spectrum (spectral index of 0 to 1) down to thermal energies maybe a better approximation instead of a sharp cut-off in the injected electron spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call