Abstract

An approximate method is devised to compute the energy‐containing portion of the spectrum of waves in water of finite depth, taking into account the effect of wave breaking. It is assumed that there exists a linear and Gaussian ideal wave train whose spectrum is first calculated using the wave energy flux balance equation without considering wave breaking. The Miche wave‐breaking criterion for waves in water of finite depth is then applied to limit the wave elevation and establish an expression for the breaking wave elevation in terms of the elevation and elevation's second time derivative of the ideal waves. Simple expressions for the mean value, the mean square value, and the spectrum of the breaking waves are then obtained, and numerical results are presented graphically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.