Abstract

The results of theoretical and experimental studies into the effect of water vapor on the electrical conductance of a gas sensor and the sensor response to hydrogen action are discussed. A relation describing the dependence of electrical conductance G0 on absolute humidity in the pure air is derived using a hypothesis of the presence of space-charge regions depleted of electrons between the SnO 2 grains in a polycrystalline tin dioxide film. Due to dissociative chemisorption of water molecules, the energy-band bending at the SnO 2 grain interfaces decreases and the oxygen-vacancy concentration in the grains increases, resuling in an increase in G0. An equation for the sensor response to hydrogen action is derived (the G1/G0, ratio, where G1 is the sensor conductance in a gas mixture containing molecular hydrogen). The expression describes the dependence of G1/G0 on the hydrogen concentration ${\rm n}_{{\rm H}_2 }$ in the interval 50–6·103 ppm, band bending at the SnO 2 grain interface, and sensor temperature. The dependences of the sensor conductance, highest possible conductance, and energy-band bending on temperature and absolute humidity resulting from processing of the experimental data are in good agreement with the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.