Abstract

Water temperature is an important determinant in many aquatic biological processes, including the growth and development of malaria mosquito (Anopheles arabiensis and A. gambiae) immatures. Water turbidity affects water temperature, as suspended particles in a water column absorb and scatter sunlight and hence determine the extinction of solar radiation. To get a better understanding of the relationship between water turbidity and water temperature, a series of semi-natural larval habitats (diameter 0.32 m, water depth 0.16 m) with increasing water turbidity was created. Here we show that at midday (1300 hours) the upper water layer (thickness of 10 mm) of the water pool with the highest turbidity was on average 2.8 degrees C warmer than the same layer of the clearest water pool. Suspended soil particles increase the water temperature and furthermore change the temperature dynamics of small water collections during daytime, exposing malaria mosquito larvae, which live in the top water layer, longer to higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.