Abstract

AbstractWater turbidity alters prey detectability and prey selection by a predator. In dimorphic mesopredators, the effect of water turbidity on foraging success may be sex specific, primarily due to sex differences in reproductive allotment, body size and vulnerability to predation. To experimentally test the effect of turbidity on prey consumption with respect to sex, we used turquoise killifish (Nothobranchius furzeri), a small fish from ephemeral savanna pools in southeast Africa that vary widely in turbidity. Large males possess conspicuous nuptial coloration while females are smaller and drab. Vision is assumed to be a fundamental sense for turquoise killifish, despite often living in very turbid water. As mesopredators, killifish regulate the invertebrate community in ephemeral pools. We tested the consumption of bloodworms (benthic and red‐coloured) and glassworms (pelagic and transparent) under clear (<1NTU) and turbid (320 NTU) water conditions. We found that turquoise killifish maintained their overall foraging success irrespective of turbidity. In both the clear and turbid water, the females consumed three times more food than males relative to their body mass. This likely stems from the females' high nutritional demands due to daily reproduction. It also suggests that females are not risk‐aversive in clear water despite their smaller size. Water turbidity affected the type of prey consumed by turquoise killifish and demonstrated its potential to affect the community structure of invertebrate species in ephemeral pools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call