Abstract

Drought is one of the major challenges of global crop production, and its severity is increasing because of climate change. This abiotic stress is an important target for Brassica species, which are generally grown in arid and semi-arid climates. This study was conducted to investigate the effects of water deficit on a set of accessions belonging to the Brassica core collection of the EU H2020 BRESOV project, represented by Brassica oleracea L. crops and Brassica oleracea complex species (n = 9). In particular, the variation in the amount and profile of the glucosinolates (GLSs) compounds was analyzed on the root and the leaf tissues. The plant morphometric traits and GLSs amount and profile were detected for the plants grown in cold greenhouse in Catania (Sicily) during the autumn–winter season for ten weeks. The results showed a wide qualitative and quantitative variation among the Brassica accessions. The GLSs profile varied qualitatively and quantitively among both genotypes and portions of the plants (hypogenous-root and epigeous-leaf). Plants grown under drought stress, for the last two weeks of the growing cycle under consideration, showed a higher amount of GLS in their leaves (190.1 ± 8.9 µmol. g−1 d.w.) compared to their roots (17.3 ± 1.9 µmol. g−1 d.w.). Under water stress conditions, the highest increase in the glucosinolate amount was detected in broccoli (the accession BR1) with 85.4% and in cauliflower (the accession CV1) with 72.8% in the roots and leaves, respectively. Positive correlations were found between the major leaf and root GLSs identified. The selection of chemotypes allows for an important time reduction during the breeding programs after crossing accessions with the specific profiles of glucosinolates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.