Abstract

It has been shown theoretically that composition drift mainly depends on reactivity ratios and water solubilities. Minimum composition drift can be obtained by lowering the monomer-to-water ratio in monomer systems where the more reactive monomer is also the more water-soluble one. Investigating the effect of water solubility on composition drift while keeping the reactivity ratios constant can elucidate the importance of the water solubility. The monomer combinations methyl acrylate-vinyl acetate (MA-VAc), methyl acrylate-vinyl 2,2-dimethylpropanoate (MA-VPV), and methyl acrylate-vinyl 2-ethylhexanoate (MA-V2EH) are ideal monomer combinations for studying the effect of water solubility on composition drift since the reactivity ratios for this series of monomer systems are approximately equal. Solution copolymerizations are performed to elucidate maximum composition drift at extremely high monomer-to-water ratios. From comparing theoretical predictions with experimental results it could be concluded that composition drift for the monomer combination MA-VAc could only be reduced since the difference in water solubility was not large enough to compensate the effects of the large difference in reactivity ratios. However, for the monomer combinations MA-VPV and MA-V2EH the difference in water solubility was large enough to make minimum composition drift possible for low monomer-to-water ratios even for monomer combinations with reactivity ratios as far apart as in the MA-vinyl ester case. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call