Abstract

Novel methods of acute weight loss practiced by combat sport athletes include "water loading," the consumption of large fluid volumes for several days prior to restriction. We examined claims that this technique increases total body water losses, while also assessing the risk of hyponatremia. Male athletes were separated into control (n = 10) and water loading (n = 11) groups and fed a standardized energy-matched diet for 6 days. Days 1-3 fluid intake was 40 and 100ml/kg for control and water loading groups, respectively, with both groups consuming 15ml/kg on Day 4 and following the same rehydration protocol on Days 5 and 6. We tracked body mass (BM), urine sodium, urine specific gravity and volume, training-related sweat losses and blood concentrations of renal hormones, and urea and electrolytes throughout. Physical performance was assessed preintervention and postintervention. Following fluid restriction, there were substantial differences between groups in the ratio of fluid input/output (39%, p < .01, effect size = 1.2) and BM loss (0.6% BM, p = .02, effect size = 0.82). Changes in urine specific gravity, urea and electrolytes, and renal hormones occurred over time (p < .05), with an interaction of time and intervention on blood sodium, potassium, chloride, urea, creatinine, urine specific gravity, and vasopressin (p < .05). Measurements of urea and electrolyte remained within reference ranges, and no differences in physical performance were detected over time or between groups. Water loading appears to be a safe and effective method of acute BM loss under the conditions of this study. Vasopressin-regulated changes in aquaporin channels may potentially partially explain the mechanism of increased body water loss with water loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.