Abstract

The transport of heavy, polydispersed particles and the inter-phase transfer of kinetic energy due to the viscous drag forces is measured experimentally in a turbulent shear layer. To study the effect of the large-scale vortex pairing event, the shear layer is forced simultaneously with a fundarmental and subharmonic perturbation. It is shown that vortex pairing plays a homogenizing role on the particulate field, but hte amount of homogenization is strongly dependent upon the particle's viscous relaxtion time, the eddy turnover time, as well as the time the particles interact with each scale prior to a pairing event. Thus, even though the smaller size particles become well-mixed across the large eddies, the larger sizes are still dispersed in an inhormogeneous fashion. It is also found that the kinetic energy transfer between the phases occurs inhomogeneously with energy being exchanged predominantly in a sublayer just outside the region of maximum turbulence intensity. The kinetic energy transfer is shown to exhibit notable positive and negative peaks located beneath the cores and stagnation points of the large-scale eddy field, and these peaks are shown to result from the irrotational velocity perturbations created by the vortices. This energy exchange mechanism remains a prominent process as long as the Stokes number of the particles relative to the vortices is of order unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.